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Mini Review
Beneficial effects of berry fruit polyphenols
on neuronal and behavioral aging
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Abstract: It is becoming increasingly clear that although there is a great deal of research being devoted to
elucidating the molecular mechanisms involved in aging, practical information on how to forestall or reverse
the deleterious effects of aging may be years away. Therefore, it may be beneficial to determine other methods
to improve the quality of life in the aging population. A plethora of epidemiological studies have indicated that
individuals who consume a diet containing high amounts of fruits and vegetables may have a reduced incidence of
age-associated diseases such as cardiovascular or neurodegenerative diseases. Research from our laboratory has
suggested that supplementation with fruit or vegetable extracts high in antioxidants can decrease the enhanced
vulnerability to oxidative stress and inflammation that occurs in aging, and that these reductions are expressed
as improvements in behavior. In addition to research indicating the antioxidant or anti-inflammatory functions
of the polyphenolic compounds found in these fruits and vegetables, further studies have suggested that other
mechanisms such as cellular signaling may contribute to the beneficial effects of these compounds on aging.
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INTRODUCTION
As populations age in many countries throughout
the world, increases in many age-associated diseases
such as cancer, cardiovascular and neurodegenerative
disease concomitantly occur. One of the most
devastating of these diseases is Alzheimer’s disease
(AD). By the year 2050, for example, 30% of
the total population of the United States will be
over 65 years of age, and a considerable number
of this elderly population will exhibit the most
common correlative motor and cognitive behavioral
changes that occur in normal aging. Research
discussed in this review suggests that the aged brain
provides ‘fertile ground’ for the development of AD
and Parkinson’s disease (PD), conditions involving
even more severe deficits in memory and/or motor
function than those seen in normal aging. Unless
some means is found to reduce these age-related
decrements in neuronal function, health care costs
from hospitalization and custodial care will continue
to rise exponentially. Thus, in both financial and
societal terms it is critical to explore treatments to
retard or reverse the neuronal and behavioral deficits
that occur in aging. In this review we will describe
these age-related motor and cognitive deficits in
behavior and show how these deficits are related
to increased vulnerability to oxidative stress (OS)
and inflammation. We will also describe the possible
role of nutritional supplementation with fruits and
vegetables containing high amounts of polyphenols,

such as anthocyanins, in forestalling or reversing these
deficits.

BEHAVIORAL DECREMENTS
A great deal of research indicates the occurrence of
numerous neuronal and behavioral deficits during
normal aging. The alterations in memory deficits
are seen on cognitive tasks that require the use of
spatial learning and memory,1 while motor function
may include decreases in balance, muscle strength
and coordination.2 Indeed, these changes have been
shown in a large number of studies and appear
to be expressed both in animals1 and humans.3

Alterations in memory appear to occur primarily in
secondary memory systems and are reflected in the
storage of newly acquired information.4 Deficits in
motor performance are thought to be the result of
changes in the striatal dopamine (DA) system, which
shows marked neurodegenerative changes with age,4

or in the cerebellum, which also shows age-related
alterations.5

Research shows that the hippocampus mediates
place learning, while the prefrontal cortex is critical
to acquiring the rules that govern performance
in particular tasks (i.e., procedural knowledge). It
appears that the dorsomedial striatum regulates spatial
orientation involving response and cue learning.6

As will be discussed below, substantial research
indicates that factors such as oxidative stress7
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and inflammation8 are major contributors to the
behavioral decrements seen in aging. As is well known,
cognitive deficits, along with markers of oxidative and
inflammatory stressors, are magnified in dementing
diseases such as AD.9

OXIDATIVE STRESS
Reactive oxygen species (ROS) collectively refer to
oxygen radicals and non-radicals that are readily
converted to radicals10–12 which are by-products of
normal aerobic metabolism.13,14 The production of
ROS is normally counterbalanced by cellular defense
systems,15,16 but approximately 1% of the ROS escape
daily elimination to produce oxidative cellular damage
leading to increased oxidative stress.17

The brain is especially susceptible to oxidative
stress16,18 for the following reasons: (a) the brain
has relatively ineffective antioxidant defenses that
include very low levels of catalase activity and only
moderate amounts of the endogenous antioxidant
enzymes, superoxide dismutase and glutathione per-
oxidase; (b) although comprising approximately 2%
of the body mass, the brain utilizes 20% of the total
oxygen consumption and is enriched with readily per-
oxidizable polyunsaturated fatty acids; (c) the brain
has high levels of iron and ascorbate, which are the
key catalysts for lipid peroxidation; (d) many neuro-
transmitters themselves are subject to autoxidation to
generate ROS;19–22 and (e) finally, except for those
in some restricted regions of the brain, neuronal cells
are post-mitotic and tend to accumulate oxidative
damage.13,23,24 Furthermore, as the brain ages, all of
these susceptibilities contribute to the increased vul-
nerability of the brain to OS during aging,25–29 as well
as the pathogenesis of age-related neurodegenerative
diseases such as AD, PD, and amyotrophic lateral
sclerosis (ALS).30–32

INFLAMMATION
Evidence suggests that increased inflammation in the
central nervous system is associated with normal
aging.33–36 By middle age there is an increased glial
fibrillary acidic protein expression36 that later, in the
elderly, even occurs in the absence of an inflammatory
stimulus.37 Research also indicates that tumor necrosis
factor-α (TNFα) is produced in higher amounts
during cytotoxic reactions in the elderly.38

In turn, increased inflammation is associated with
enhanced ROS production.39–42 Over-production of
ROS has been reported in several inflammatory
diseases43–45 and is associated with microglial cell
activation44,46–49 as well as the activation of inflam-
matory mediators such as the inducible nitric oxide
synthase (iNOS), interleukin-1β (IL-1β), TNFα, and
nuclear factor kappa B (NF-κB).50–57

Importantly, oxidative stress-mediated inflamma-
tion has also been attributed to neurodegenerative
disorders including AD and PD,58–63 and the increases

in sensitivity of the brain to OS and inflammation in
senescence may be the cause of the behavioral deficits
outlined above.

NEUROPROTECTIVE EFFECTS OF FRUIT
POLYPHENOLS
The key, then, to possibly reducing the incidence of
age-related dementing diseases might be to alter the
neuronal environment such that neuroinflammation
and oxidative stress and the vulnerability to them are
reduced. Research from our laboratory and others
suggests that the combinations of antioxidant/anti-
inflammatory polyphenolics found in fruits and
vegetables may be effective in this regard.

Plants, including food plants (fruits and vegetables),
synthesize a vast array of secondary chemical
compounds that, while not involved in their primary
metabolism, are important in serving a variety
of ecological functions that enhance the plant’s
survivability. Interestingly, these antioxidant/anti-
inflammatory compounds may be responsible for
the multitude of beneficial effects that have been
reported for fruits and vegetables on an array of
health-related bioactivities. However, up until very
recently the majority of the dietary agents employed
to alter behavioral and neuronal effects with aging
included such nutritional supplements as vitamins C
or E, and garlic,64 with only limited attention given
to the possible value of polyphenolic-containing plant-
derived supplements such as ginseng, Ginkgo biloba,
and ding lang.65

In an exploration of the effects of plant-derived
polyphenols in aging, we assessed whether fruit
or vegetable intervention would reverse cognitive
and motor behavioral deficits in aged animals. We
found that dietary supplementation (for 8 weeks)
with spinach, strawberry or blueberry (BB) extracts
in an AIN-93 diet was effective in reversing age-
related deficits in neuronal and cognitive function as
shown by Morris water maze (MWM) performance
in aged (19 months) F344 rats.66 However, only
the BB-supplemented group exhibited improved
performance on tests of motor function. Specifically,
the BB-supplemented group displayed improved
performance on two motor tests which rely on balance
and coordination – rod walking and the accelerating
rotarod – while none of the other supplemented
groups differed from control on these tasks.

In the same study, the rodents in all diet groups,
but not the control group, showed improved working
memory (short-term memory) performance in the
MWM, demonstrated as one-trial learning following
the 10 min retention interval.66 We also observed
significant increases in several indices of neuronal
signaling (e.g., muscarinic receptor sensitivity), and
found that the BB-supplemented diet reversed age-
related deregulation in calcium-45 buffering capacity,
an important index of neuronal dysfunction in aging.66

The fruits and vegetables used in these studies were
all high in antioxidant capacities as measured by the
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modified oxygen radical absorbance capacity (ORAC)
assay.67 While this may provide some explanation
for the positive benefits obtained, assessments of
oxidative stress in the tissue from these animals
revealed only modest decreases. Examinations of ROS
production in the brain tissue obtained from animals
in the various diet groups indicated that the tissue
(e.g., striata) obtained from all of the supplemented
groups exhibited significantly less ROS levels than the
controls via 2′,7′-dichlorofluorescein diacetate (DCF)
assay. However, these decreases did not appear to
be sufficient to account for the observed significant
beneficial effects of BB supplementation on motor
and cognitive function. It was clear from this66 and a
subsequent68 study that the significant effects of BB
on both motor and cognitive behavior were due to a
multiplicity of actions, in addition to those involving
antioxidant and anti-inflammatory activities.

In another study using APP/PS1 (amyloid precur-
sor protein/presenilin-1) transgenic mice maintained
on a blueberry-supplemented diet, we found that
extracellular signal regulated kinase (ERK) and pro-
tein kinase C (PKC), two important transcription
factors in learning and memory, were upregulated.
These findings indicated that the polyphenols found
in the berry fruit may affect neuronal signaling.69

These studies also suggested that BB supplementation
may actually prevent cognitive deficits, as shown by
enhanced performance in a Y maze, directly enhancing
neuronal signaling, and offsetting any putative dele-
terious effects of the amyloid deposition. The data
also revealed that blueberry supplements seemed to
enhance signaling at the level of the kinases and,
more directly, to increase the sensitivity of muscarinic
receptors as indicated by increased striatal, carbachol-
stimulated GTPase activity.69

We are currently exploring additional mechanisms
involving these effects, and recent research from our
laboratory using a COS-7 cell model indicates that
BB polyphenolics can directly alter oxidative stress
signaling,70 particularly with respect to MAP kinase
(e.g., ERK) activation and cyclic AMP response
element binding protein (CREB).71

These findings, combined with additional prelim-
inary research showing that BB supplementation in
senescent rats may increase neurogenesis,72 suggest
that at least part of the efficacy of BB supplemen-
tation may be to allow aging brain regions involved
in both motor and memory performance to com-
municate more effectively with each other via the
formation of new neurons. Thus, BB supplementa-
tion, by facilitating both neurogenesis and enhanced
neuronal signaling, may strengthen areas of the brain
showing the ravages of time.
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